datascience.tables.Table.sample_from_distribution¶
- Table.sample_from_distribution(distribution, k, proportions=False)[source]¶
Return a new table with the same number of rows and a new column. The values in the distribution column are define a multinomial. They are replaced by sample counts/proportions in the output.
>>> sizes = Table(['size', 'count']).with_rows([ ... ['small', 50], ... ['medium', 100], ... ['big', 50], ... ]) >>> np.random.seed(99) >>> sizes.sample_from_distribution('count', 1000) size | count | count sample small | 50 | 228 medium | 100 | 508 big | 50 | 264 >>> sizes.sample_from_distribution('count', 1000, True) size | count | count sample small | 50 | 0.261 medium | 100 | 0.491 big | 50 | 0.248