
In [18]: # HIDDEN
import matplotlib
matplotlib.use('Agg')
from datascience import *
%matplotlib inline
import matplotlib.pyplot as plots
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import math
import scipy.stats as stats
plots.style.use('fivethirtyeight')

Building a model
So far, we have talked about prediction, where the purpose of learning is to be able to predict the class
of new instances. I'm now going to switch to model building, where the goal is to learn a model of how
the class depends upon the attributes.

One place where model building is useful is for science: e.g., which genes influence whether you
become diabetic? This is interesting and useful in its right (apart from any applications to predicting
whether a particular individual will become diabetic), because it can potentially help us understand the
workings of our body.

Another place where model building is useful is for control: e.g., what should I change about my
advertisement to get more people to click on it? How should I change the profile picture I use on an
online dating site, to get more people to "swipe right"? Which attributes make the biggest difference to
whether people click/swipe? Our goal is to determine which attributes to change, to have the biggest
possible effect on something we care about.

We already know how to build a classifier, given a training set. Let's see how to use that as a building
block to help us solve these problems.

How do we figure out which attributes have the biggest influence on the output? Take a moment and
see what you can come up with.

Feature selection
Background: attributes are also called features, in the machine learning literature.

Our goal is to find a subset of features that are most relevant to the output. The way we'll formalize is
this is to identify a subset of features that, when we train a classifier using just those features, gives the
highest possible accuracy at prediction.

Intuitively, if we get 90% accuracy using the features and 88% accuracy using just three of the features
(for example), then it stands to reason that those three features are probably the most relevant, and they
capture most of the information that affects or determines the output.

With this insight, our problem becomes:

Find the subset of features that gives the best possible accuracy (when we use only
those features for prediction).

This is a feature selection problem. There are many possible approaches to feature selection. One
simple one is to try all possible ways of choosing of the features, and evaluate the accuracy of each.
However, this can be very slow, because there are so many ways to choose a subset of features.

Therefore, we'll consider a more efficient procedure that often works reasonably well in practice. It is
known as greedy feature selection. Here's how it works.

1. Suppose there are features. Try each on its own, to see how much accuracy we can get
using a classifier trained with just that one feature. Keep the best feature.

2. Now we have one feature. Try remaining features, to see which is the best one to add to
it (i.e., we are now training a classifier with just 2 features: the best feature picked in step 1, plus
one more). Keep the one that best improves accuracy. Now we have 2 features.

3. Repeat. At each stage, we try all possibilities for how to add one more feature to the feature
subset we've already picked, and we keep the one that best improves accuracy.

Let's implement it and try it on some examples!

Code for k-NN
First, some code from last time, to implement -nearest neighbors.

ℓ
ℓ

ℓ
ℓ

d

d − 1

k

In [2]: def distance(pt1, pt2):
 tot = 0
 for i in range(len(pt1)):
 tot = tot + (pt1[i] - pt2[i])**2
 return math.sqrt(tot)

In [3]: def computetablewithdists(training, p):
 dists = np.zeros(training.num_rows)
 attributes = training.drop('Class').rows
 for i in range(training.num_rows):
 dists[i] = distance(attributes[i], p)
 withdists = training.copy()
 withdists.append_column('Distance', dists)
 return withdists

def closest(training, p, k):
 withdists = computetablewithdists(training, p)
 sortedbydist = withdists.sort('Distance')
 topk = sortedbydist.take(range(k))
 return topk

def majority(topkclasses):
 if topkclasses.where('Class', 1).num_rows > topkclasses.wher
e('Class', 0).num_rows:
 return 1
 else:
 return 0

def classify(training, p, k):
 closestk = closest(training, p, k)
 topkclasses = closestk.select('Class')
 return majority(topkclasses)

In [4]: def evaluate_accuracy(training, valid, k):
 validattrs = valid.drop('Class')
 numcorrect = 0
 for i in range(valid.num_rows):
 # Run the classifier on the ith patient in the test set
 c = classify(training, validattrs.rows[i], k)
 # Was the classifier's prediction correct?
 if c == valid['Class'][i]:
 numcorrect = numcorrect + 1
 return numcorrect / valid.num_rows

Code for feature selection
Now we'll implement the feature selection algorithm. First, a subroutine to evaluate the accuracy when
using a particular subset of features:

In [5]: def evaluate_features(training, valid, features, k):
 tr = training.select(['Class']+features)
 va = valid.select(['Class']+features)
 return evaluate_accuracy(tr, va, k)

Next, we'll implement a subroutine that, given a current subset of features, tries all possible ways to add
one more feature to the subset, and evaluates the accuracy of each candidate. This returns a table that
summarizes the accuracy of each option it examined.

In [6]: def try_one_more_feature(training, valid, baseattrs, k):
 results = Table.empty(['Attribute', 'Accuracy'])
 for attr in training.drop(['Class']+baseattrs).column_labels:
 acc = evaluate_features(training, valid, [attr]+baseattrs,
k)
 results.append((attr, acc))
 return results.sort('Accuracy', descending=True)

Finally, we'll implement the greedy feature selection algorithm, using the above subroutines. For our own
purposes of understanding what's going on, I'm going to have it print out, at each iteration, all features it
considered and the accuracy it got with each.

In [7]: def select_features(training, valid, k, maxfeatures=3):
 results = Table.empty(['NumAttrs', 'Attributes', 'Accuracy'])
 curattrs = []
 iters = min(maxfeatures, len(training.column_labels)-1)
 while len(curattrs) < iters:
 print('== Computing best feature to add to '+str(curattrs))
 # Try all ways of adding just one more feature to curattrs
 r = try_one_more_feature(training, valid, curattrs, k)
 r.show()
 print()
 # Take the single best feature and add it to curattrs
 attr = r['Attribute'][0]
 acc = r['Accuracy'][0]
 curattrs.append(attr)
 results.append((len(curattrs), ', '.join(curattrs), acc))
 return results

Example: Tree Cover
Now let's try it out on an example. I'm working with a data set gathered by the US Forestry service. They
visited thousands of wildnerness locations and recorded various characteristics of the soil and land.
They also recorded what kind of tree was growing predominantly on that land. Focusing only on areas
where the tree cover was either Spruce or Lodgepole Pine, let's see if we can figure out which
characteristics have the greatest effect on whether the predominant tree cover is Spruce or Lodgepole
Pine.

There are 500,000 records in this data set -- more than I can analyze with the software we're using. So,
I'll pick a random sample of just a fraction of these records, to let us do some experiments that will
complete in a reasonable amount of time.

In [8]: all_trees = Table.read_table('treecover2.csv.gz', sep=',')
all_trees = all_trees.sample(all_trees.num_rows)
training = all_trees.take(range(0, 1000))
validation = all_trees.take(range(1000, 1500))
test = all_trees.take(range(1500, 2000))

In [9]: training.show(2)

Let's start by figuring out how accurate a classifier will be, if trained using this data. I'm going to
arbitrarily use for the -nearest neighbor classifier.

In [10]: evaluate_accuracy(training, validation, 15)

Now we'll apply feature selection. I wonder which characteristics have the biggest influence on
whether Spruce vs Lodgepole Pine grows? We'll look for the best 4 features.

k = 15 k

Elevation Aspect Slope HorizDistToWater VertDistToWater HorizDistToRoad Hillshade9am

2990 357 18 696 121 2389 189

3255 283 27 418 149 360 134

... (998 rows omitted)

Out[10]: 0.722

In [11]: best_features = select_features(training, validation, 15)

== Computing best feature to add to []

Attribute Accuracy

Elevation 0.746

Area2 0.608

Area4 0.586

HorizDistToFire 0.564

VertDistToWater 0.564

HorizDistToRoad 0.56

Hillshade3pm 0.554

Aspect 0.554

HillshadeNoon 0.548

Hillshade9am 0.548

HorizDistToWater 0.542

Slope 0.538

Area3 0.414

Area1 0.414

== Computing best feature to add to ['Elevation']

Attribute Accuracy

HorizDistToWater 0.778

Aspect 0.774

HillshadeNoon 0.772

HorizDistToRoad 0.772

Hillshade9am 0.766

HorizDistToFire 0.76

Area3 0.756

Area1 0.756

Slope 0.756

VertDistToWater 0.754

Hillshade3pm 0.752

Area4 0.746

Area2 0.744

== Computing best feature to add to ['Elevation', 'HorizDistToWa
ter']

Attribute Accuracy

Hillshade3pm 0.788

HillshadeNoon 0.786

Slope 0.784

Area4 0.778

Area3 0.778

Area2 0.778

Area1 0.778

Hillshade9am 0.778

VertDistToWater 0.774

HorizDistToFire 0.756

Aspect 0.756

HorizDistToRoad 0.748

In [12]: best_features

As we can see, Elevation looks like far and away the most discriminative feature. Assuming you have
that, it also looks like the distance to water or a road might be a good second feature. This suggests
that these characteristics might play a role in the biology of which tree grows best, and thus might tell
us something about the science.

Out[12]: NumAttrs Attributes Accuracy

1 Elevation 0.746

2 Elevation, HorizDistToWater 0.778

3 Elevation, HorizDistToWater, Hillshade3pm 0.788

Hold-out sets: Training, Validation, Testing
Suppose we built a predictor using just the best two features, Elevation and HorizDistToWater. How
accurate would we expect it to be, on new locations that we haven't tried yet? 74.6% accurate? more?
less? Why?

The correct answer is: the same, or less. It's the same issue we mentioned last lecture about testing
on the training set. We've tried multiple different approaches, and taken the best; if we then evaluate it
on the same data set we used to select which is best, we will get a biased numbers -- an overestimate
of the true accuracy.

Why? Here's an analogy. Suppose the coach of the track team holds try-outs. 100 students try out,
and he has them all run 800 meters and times them. He picks the fastest student and has them
represent us in their next track meet. How do you think that student's performance in the next track
meet will be, compared to their tryout? Faster than in tryouts? Slower than in tryouts? Exactly the
same?

Well, if running was all skill and no luck, then the student's time would be exactly the same. But there's
also an element of randomness: some people do better, or worse, on any given day. If it was all
randomness, the coach would be picking the runner who got the luckiest in try-outs, not the runner
who is the fastest, and at the meet that runner would almost certainly be slower than in tryouts -- their
speed in the tryout is biased, not an accurate estimate of their future performance. The same will tend
to be true if performance is a mixture of skill and luck.

And each combination of features we've tried out is like a runner. We picked the combination that did
the best in our trials, but there's an element of randomness there, so we might just be seeing random
fluctuations rather than a combination that's truly better.

The way to get an unbiased estimate of performance is the same as last lecture: get some more data;
or set some aside in the beginning so we have more when we need it. In this case, I set aside two
extra chunks of data, a validation data set and a test data set. I used the validation set to select a few
best features. Now we're going to measure the performance of this on the test set, just to see what
happens.

In [13]: evaluate_features(training, validation, ['Elevation'], 15)

In [14]: evaluate_features(training, validation, ['Elevation', 'HorizDistT
oWater'], 15)

In [16]: evaluate_features(training, test, ['Elevation'], 15)

Out[13]: 0.746

Out[14]: 0.778

Out[16]: 0.724

In [17]: evaluate_features(training, test, ['Elevation', 'HorizDistToWate
r'], 15)

Why do you think we see this difference?

Thought Questions
Suppose that the top two attributes had been Elevation and HorizDistToRoad. Interpret this for me.
What might this mean for the biology of trees? One possible explanation is that the distance to the
nearest road affects what kind of tree grows; can you give any other possible explanations?

Once we know the top two attributes are Elevation and HorizDistToWater, suppose we next wanted to
know how they affect what kind of tree grows: e.g., does high elevation tend to favor spruce, or does it
favor lodgepole pine? How would you go about answering these kinds of questions?

The scientists also gathered some more data that I left out, for simplicity: for each location, they also
gathered what kind of soil it has, out of 40 different types. The original data set had a column for soil
type, with numbers from 1-40 indicating which of the 40 types of soil was present. Suppose I wanted
to include this among the other characteristics. What would go wrong, and how could I fix it up?

For this example we picked arbitrarily. Suppose we wanted to pick the best value of -- the
one that gives the best accuracy. How could we go about doing that? What are the pitfalls, and how
could they be addressed?

Suppose I wanted to use feature selection to help me adjust my online dating profile picture to get the
most responses. There are some characteristics I can't change (such as how handsome I am), and
some I can (such as whether I smile or not). How would I adjust the feature selection algorithm above
to account for this?

In []:

k = 15 k

Out[17]: 0.772

