

Review II, December 7

Inference; Theory of Prob/Stat

Slides created by Ani Adhikari and John DeNero

Plan for This Week

• Today:

- Complete Inference review
- Theory of Prob/Stat
- GSIs: today and tomorrow during lab times:
 - First hour: review problems on particular topic
 - Second hour: office hour
 - Topics on Review links on data8.org
- Fri: Go see a dumb movie or relax in some other way

Final Exam

- Monday December 12, 8:00 11:00
- RSF Field House
- Bring something to write with and something to erase with; but not your breakfast. Water is OK.
- We will provide a couple of reference sheets, with drafts posted on Piazza during RRR week
- 16 questions (six 5-pointers, five 6-pointers, five 8-pointers).
- Covers the whole course

Big Picture of Course Contents

- 1. Python
- 2. Describing data
- 3. General concepts of inference
- 4. Theory of probability and statistics
- 5. Methods of inference

5. ... Continued from Last Time

Inference: Tests of Hypotheses

Comparing Two Categorical Samples

- Null: The two samples come from the same underlying distribution in the population
- Test statistic: TVD between the distributions of the two samples
- Method:
 - Permutation: Under the null, pool the two samples, shuffle, and split into new samples A and B
- 16.1 (mitoses rating CKD/non-CKD; clump thickness rating cancerous/non-cancerous)

Comparing Two Numerical Samples

- Null: The two samples come from the same underlying distribution in the population.
- Test statistic: difference between sample means (take absolute value depending on alternative)
- Methods (two!) for A/B Testing:
 - Permutation under the null: 10.4 (Deflategate), 16.2 (birth weight etc for smokers/nonsmokers), 16.3 (BTA RCT)
 - **Bootstrap CI** for difference: 16.2, 16.3

Causality

- Tests of hypotheses can help decide that a difference is not due to chance
- But they don't say *why* there is a difference ...
- Unless the data are from an RCT 16.3
 In that case a difference that's not due to chance can be ascribed to the treatment

Classification

- Binary classification based on attributes
 k-nearest neighbor classifiers
- Training and test sets
 - Why these are needed
 - How to generate them
- Implementation:
 - Distance between two points
 - Class of the majority of the *k* nearest neighbors
- Accuracy: Proportion of test set correctly classified 15.5

15.2

15.1

15.4

4. Probability and Statistics: Theory

- Descriptive statistics:
 - One variable
 - Two variables
- Probability theory:
 - Exact calculations
 - Normal approximation for mean of large random sample
 - Accuracy and sample size

Measures of Center

- Median: 50th percentile, where
 - pth percentile = smallest value on list that is at least as large as p% of the values 11.1
- Median is not affected by outliers
- Mean of 5, 7, 8, 8 = (5+7+8+8)/4 12.1 = 5*0.25 + 7*0.25 + 8*0.5
- Mean depends on all the values; smoothing operation; center of gravity of histogram; if histogram is skewed, mean is pulled away from median towards the tail

Measure of Spread

Standard deviation (SD)

root	mean	square of	deviations from	average
5	4	3	2	1

Measures roughly how far off the values are from average

Chebychev's Bounds

Range	Proportion		
average ± 2 SDs	at least 1 - 1/4 (75%)		
average ± 3 SDs	at least 1 - 1/9 (88.888%)		
average ± 4 SDs	at least 1 - 1/16 (93.75%)		
average ± z SDs	at least 1 - $1/z^2$		

no matter what the distribution looks like 12.2

How Big are Most of the Values?

No matter what the shape of the distribution,

the bulk of the data are in the range "average ± a few SDs"

If a histogram is bell-shaped, then

- the SD is the distance between the average and the points of inflection on either side
- Almost all of the data are in the range "average ± 3 SDs"

12.2, 12.3

Bounds and normal approximations

Percent in Range	All Distributions	Normal Distribution
average + 1 SD	at least 0%	about 68%
average ± 2 SDs	at least 75%	about 95%
average ± 3 SDs	at least 88.888%	about 99.73%

Standard Units z

"average ± z SDs"

12.2

- z measures "how many SDs above average"
- Almost all standard units are in the range (-5, 5)
- To convert a value to standard units:

Definition of *r*

Correlation Coefficient (r) =

average of	product of	<i>x</i> in standard	and	<i>y</i> in standard
		units		units

Measures how clustered the scatter is around a straight line 13.1

The Correlation Coefficient *r*

- Measures *linear* association
- Based on standard units; pure number with no units
- *r* is not affected by changing units of measurement
- -1 ≤ r ≤ 1
- *r* = 0: No linear association; *uncorrelated*
- r is not affected by switching the horizontal and vertical axes
- 13.1

Regression to the Mean

- estimate of y = r · x, when both variables are measured in standard units
- If r = 0.6, and the given x is 2 standard units, then:
 The given x is 2 SDs above average
 The prediction for y is 1.2 SDs above average
- On average (though not for each individual), regression predicts *y* to be closer to the mean than *x* is
 13.2

Regression Estimate, Method I

A course has a midterm (average 70; standard deviation 10) and a really hard final (average 50; standard deviation 12)

If the scatter of midterm & final scores for students looks like a typical oval with correlation 0.75, then...

What do you expect the average final score would be for a student who scored 90 on the midterm?

2 standard units on midterm, so estimate $0.75 \times 2 = 1.5$ standard units on final. So estimated final score = $1.5 \times 12 + 50 = 68$ points

Regression Line

Standard Units 2 y (0, 0) -2 -1 -2

Original Units (Average x, r * SD y Average y) SD x

Slope and Intercept

estimate of y = slope * x + intercept

slope of the regression line $= r \cdot \frac{\text{SD of } y}{\text{SD of } x}$

intercept of the regression line = average of y - slope \cdot average of x

• 13.2

Regression Estimate, Method II

The equation of a regression line for estimating child's height based on midparent height is

estimated child's height = 0.64 · midparent height + 22.64

Estimate the height of someone whose midparent height is 69 inches.

0.64*69 + 22.64 = 66.8 inches

Residuals

- Error in regression estimate
- One residual corresponding to each point (*x*, *y*)
- residual = observed *y* regression estimate of *y*
 - = vertical difference between point and line
- No matter what the shape of the scatter plot:
 - Residual plot does not show a trend
 - Average of residuals = 0

SD of residuals =
$$\sqrt{1-r^2} \times SD$$
 of y

13.6

Equally Likely Outcomes

• If all outcomes are assumed equally likely, then probabilities are proportions of outcomes:

number of outcomes that make A happen

total number of outcomes

= proportion of outcomes that make A happen

• 8.4

Probability: Exact Calculations

- Probabilities are between 0 (impossible) and 1 (certain)
- P(event happens) = 1 P(the event doesn't happen)
- Chance that two events *A* and *B* both happen
- = P(A happens) x P(B happens given that A has happened)
- If event A can happen in *exactly one* of two ways, then
 P(A) = P(first way) + P(second way)
- 8.4

Updating Probabilities

- Start with prior probabilities of two classes; priors can be subjective
- Known: **likelihood** of data, given each of the classes
- Acquire data according to these likelihoods
- Update the prior probabilities by finding posterior probabilities of the two classes, given the data
- Tree diagrams and **Bayes' Rule:** 17.1, 17.2

Approximation: CLT

Central Limit Theorem

If the sample is

- large, and
- drawn at random with replacement,

Then, regardless of the distribution of the population,

the probability distribution of the sample sum (or of the sample mean) is *roughly* bell-shaped 12.4

Random Sample Mean

- Fix a sample size
- Draw *all possible random samples* of that size
- Compute the mean of each sample
- You'll end up with a lot of means
- The distribution of those is the *probability distribution of the sample mean*
- It's centered at the population mean
- SD = (population SD)/ $\sqrt{(\text{sample size})}$ 12.5
- If the sample is large, it's roughly bell shaped by CLT

Accuracy of Random Sample Mean

- Greater if SD of sample mean is smaller
- Doesn't depend on population size
- Increases as sample size increases, because SD of sample mean decreases
- For 3 times the accuracy, you have to multiply the sample size by a factor of 3² = 9
- Square Root Law: If you multiply sample size by a factor, accuracy goes up by the square root of the factor
 12.5

Application to Proportions

• Fact: **SD of 0-1 population** ≤ **0.5**

- Total width of 95% CI for population proportion:
 - = 4 SDs of the sample proportion
 - = 4 x (SD of 0-1 population)/ $\sqrt{(\text{sample size})}$
 - \leq 4 x 0.5/ $\sqrt{(\text{sample size})}$
 - = 2 / $\sqrt{(\text{sample size})}$
- So if you know the desired width of the interval, you can solve for (an overestimate of) the sample size