Empirical Distribution of a Statistic
Announcements

- Project is due 5 pm Tuesday Oct 4.
- Homework tonight!
- Midterm is on Friday Oct 14, two weeks away. No computers or calculators on the midterm.
- No alternate dates for the midterm.
Empirical Distribution of a Sample

If the sample size is large,

then the empirical distribution of a random sample

resembles the distribution of the population,

with high probability.
Roulette (Demo)
Terminology

- **Parameter**
 - A number associated with the population

- **Statistic**
 - A number calculated from the sample

- Sometimes, a statistic can be used as an *estimate* of a parameter.

(Demo)
Simulating a Statistic

Fix a sample size and choose your statistic.

1. Simulate the statistic once:
 a. Draw a random sample of the size you fixed.
 b. Calculate the statistic and keep a record of the value.

2. Repeat Step 1 numerous times (as many times as you have patience for; thousands are good).

3. You now have one value of the statistic for each repetition. Visualize the results.
How many enemy warplanes?
Assumptions

- Planes have serial numbers 1, 2, 3, …, N.
- We don’t know N.
- We would like to estimate N based on the serial numbers of the planes that we see.

The main assumption

- The serial numbers of the planes that we see are a uniform random sample drawn with replacement from 1, 2, 3, …, N.
Discussion Question

If you saw these serial numbers, what would be your estimate of N?

170 271 285 290 48
235 24 90 291 19

One idea: 291. Just go with the largest one.
The Largest Number Observed

- Is it likely to be close to N?
 - How likely?
 - How close?

Option 1. We could try to calculate the probabilities and draw a probability histogram.

Option 2. We could simulate and draw an empirical histogram.

(Demo)
Verdict on the Estimate

- The largest serial number observed is likely to be close to N.
- But it is also likely to underestimate N.

Another idea for an estimate:
Average of the serial numbers observed $\sim \frac{N}{2}$

New estimate: 2 times the average

(Demo)
Bias

- **Biased estimate**: On average across all possible samples, the estimate is either too high or too low.

- Bias creates a systematic error in one direction.

- Good estimates typically have low bias.
Variability

- The value of an estimate *varies* from one sample to another.
- High variability makes it hard to estimate accurately.
- Good estimates typically have low variability.
Bias-Variance Tradeoff

- The **max** has low variability, but it is biased.
- **2*average** has little bias, but it is highly variable.
- Life is tough.