Lecture 25, October 24

Center and Spread

Slides created by Ani Adhikari and John DeNero
Announcements

- Project 2 will be released this week!
- Homework due as usual
- I’ve posted on Piazza about courses to consider if you are interested in data science. I have no further info yet. I’ll post on Piazza as soon as I do.
The Average

Data: 2, 3, 3, 9 \(\text{Average} = \frac{2+3+3+9}{4} = 4.25 \)

- Not a value in the collection
- Need not be an integer even if the data are integers
- Somewhere between min and max, but not necessarily halfway in between
- Same units as the data
- Smoothing operator: collect all the contributions in one big pot, then split evenly
Weights

Data: 2, 3, 3, 9

$4.25 = 2 \ast \left(\frac{1}{4}\right) + 3 \ast \left(\frac{1}{4}\right) + 3 \ast \left(\frac{1}{4}\right) + 9 \ast \left(\frac{1}{4}\right)$

$= 2 \ast \left(\frac{1}{4}\right) + 3 \ast \left(\frac{2}{4}\right) + 9 \ast \left(\frac{1}{4}\right)$

$= 2 \ast 0.25 + 3 \ast 0.5 + 9 \ast 0.25$ (Demo)
Average, Histogram, Median

- The average is the center of gravity of the histogram.

- If the distribution is symmetric about a point, then that point is both the average and the median.

- If the histogram is skewed (has a tail) in one direction, then the average is pulled away from the median in the direction of the tail.

(Demo)
How Far from the Average?

- Standard deviation (SD) measures roughly how far the data are from their average.

- \[SD = \text{root mean square of deviations from average} \]

- SD has the same units as the data; hence OK to say “average plus or minus a few SDs” (Demo)
Chebychev’s Bounds

For all distributions, no matter what their shape:

- % in the range “average ± 2 SD”: at least 75%
- % in the range “average ± 3 SD”: at least 88.8888…%
- % in the range “average ± z SD”: at least $1 - \frac{1}{z^2}$

(Demo)
Standard Units

- How many SDs above average?

 - \(z = \frac{\text{value} - \text{mean}}{\text{SD}} \)
 - Negative \(z \): value below average
 - Positive \(z \): value above average
 - \(z=0 \): value equal to average

- List in standard units: average = 0, SD = 1

- By Chebychev, most values of \(z \) are in (-5, 5)