Lecture 35, November 18

Comparing Two Samples

Slides created by Ani Adhikari and John DeNero
Announcements

● Project 3 checkpoint Tuesday 11/22, final deadline Tuesday 11/29
● Homework will be assigned today:
 ○ Early submission: Wed 11/23 (usual schedule)
 ○ “Regular” submission: Monday 11/28 after the break
● GSI/Tutor office hours locations from now on:
 ○ Mondays Etcheverry 3106
 ○ Wednesdays Etcheverry 3108
 ○ Other days: no change
Finding the k Nearest Neighbors

To find the k nearest neighbors of a point:

- Find the distance between the point and each point in the training set
- Augment the training data table with a column containing all the distances
- Sort the augmented table in increasing order of the distances
- Take the top k rows of the sorted table

(Demo)
The Classifier

To classify a point:

● Find its k nearest neighbors

● Take a majority vote of the k nearest neighbors to see which of the two classes appears more often

● Assign the point the class that wins the majority vote

(Demo)
Assessing Accuracy

- Separate the data at random into a training set and a test set
- Use the training set to classify each point in the test set
- Find the fraction of points for which the classification is correct

(Demo)
A Much Simpler Classifier

- Take just one categorical attribute

- Compare:
 - Its distribution among Class 0 individuals
 - Its distribution among Class 1 individuals

- If the distributions are different, maybe you can use that to create another classifier
Relation between Attribute and Class

Categorical variables; how to decide about “relation”?

- **Null:**
 - In the population, the attribute and class are not related.
- **Alternative:**
 - In the population, the attribute and class are related

(Demo)
Permutation Test

- For whether two samples are drawn randomly from the same underlying distribution
 - the distribution of the attribute don’t depend on the class
- If the null is true, all rearrangements of the attribute values among the two classes are equally likely
- So compute the observed test statistic
 - Then shuffle the attribute values and recompute the statistic; repeat; compare with observed statistic