Lecture 4

Data Types
Announcements
What are the column labels of each table?

```python
x = cones.select('Flavor', 'Color')
x
y = x.drop('Color')
y
x = cones.select('Color', 'Price')
x
y
```
Arithmetic Operators

<table>
<thead>
<tr>
<th>Operation</th>
<th>Operator</th>
<th>Example</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>+</td>
<td>2 + 3</td>
<td>5</td>
</tr>
<tr>
<td>Subtraction</td>
<td>-</td>
<td>2 - 3</td>
<td>-1</td>
</tr>
<tr>
<td>Multiplication</td>
<td>*</td>
<td>2 * 3</td>
<td>6</td>
</tr>
<tr>
<td>Division</td>
<td>/</td>
<td>7 / 3</td>
<td>2.66667</td>
</tr>
<tr>
<td>Remainder</td>
<td>%</td>
<td>7 % 3</td>
<td>1</td>
</tr>
<tr>
<td>Exponentiation</td>
<td>**</td>
<td>2 ** 0.5</td>
<td>1.41421</td>
</tr>
</tbody>
</table>
Python has two real number types

- **int**: an integer of any size
- **float**: a number with an optional fractional part

An int never has a decimal point; a float always does

A float might be printed using scientific notation

Three limitations of float values:

- They have limited size (but the limit is huge)
- They have limited precision of 15-16 decimal places
- After arithmetic, the final few decimal places can be wrong
Arithmetic Question

Rank the results of the following expressions in order from least to greatest

A. \(3 \times 10^{10} \)
B. \(10 \times 3^{10} \)
C. \((10 \times 3)^{10}\)
D. \(10 / 3 / 10\)
E. \(10 / (3 / 10)\)
Strings
Text and Strings

A string value is a snippet of text of any length

- 'a'
- 'word'
- "there can be 2 sentences. Here's the second!"

Strings consisting of numbers can be converted to numbers

- int('12')
- float('1.2')

Any value can be converted to a string

- str(5)
Discussion Question

Assume you have run the following statements

\[
x = 3 \\
y = '4' \\
z = '5.6'
\]

What's the source of the error in each example?

A. \(x + y \)
B. \(x + \text{int}(y + z) \)
C. \(\text{str}(x) + \text{int}(y) \)
D. \(\text{str}(x, y) + z \)
Types
Every value has a type

We’ve seen 5 types so far:

- int: 2
- float: 2.2
- str: 'Red fish, blue fish'

The `type` function can tell you the type of a value

- `type(2)`
- `type(2 + 2)`

An expression’s “type” is based on its value, not how it looks

- `x = 2`
- `type(x)`
Conversions

Strings that contain numbers can be converted to numbers

- \texttt{int('12')}
- \texttt{float('1.2')}
- \texttt{float('one point two')} # Not a good idea!

Any value can be converted to a string

- \texttt{str(5)}

Numbers can be converted to other numeric types

- \texttt{float(1)}
- \texttt{int(1.2)} # DANGER: loses information!
Attendance
https://tinyurl.com/lecnum2
Arrays
Arrays

An array contains a sequence of values

- All elements of an array should have the same type
- Arithmetic is applied to each element individually
- When two arrays are added, they must have the same size; corresponding elements are added in the result
- A column of a table is an array