

Lecture 25

Center and Spread

Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu)

Announcements

Chance versus Confidence

Is This What a CI Means?

An approximate 95% confidence interval for the average age of the mothers in the population is (26.9, 27.6) years.

True or False:

• There is a 0.95 probability that the average age of mothers in the population is in the range 26.9 to 27.6 years.

Answer: False. The average age of the mothers in the population is unknown but it's a constant. It's not random. No chances involved.

Confidence Intervals For Testing

Using a CI for Testing

- Null hypothesis: **Population average = x**
- Alternative hypothesis: Population average ≠ x
- Cutoff for P-value: p%
- Method:
 - Construct a (100-p)% confidence interval for the population average
 - If *x* is not in the interval, reject the null
 - If x is in the interval, can't reject the null

(Demo)

Center and Spread

Questions

- How can we quantify natural concepts like "center" and "variability"?
- Why do many of the empirical distributions that we generate come out bell shaped?

How is sample size related to the accuracy of an estimate?

The Average (or Mean)

Data: 2, 3, 3, 9 Average = (2+3+3+9)/4 = 4.25

- Need not be a value in the collection
- Need not be an integer even if the data are integers
- Somewhere between min and max, but not necessarily halfway in between
- Same units as the data
- Smoothing operator: collect all the contributions in one big pot, then split evenly

(Demo)

Discussion Question

Create a data set that has this histogram. (You can do it with a short list of whole numbers.)

What are its median and mean?

Discussion Question

Are the medians of these two distributions the same or different? Are the means the same or different? If you say "different," then say which one is bigger.

Comparing Mean and Median

- **Mean:** Balance point of the histogram
- **Median:** Half-way point of data; half the area of histogram is on either side of median
- If the distribution is symmetric about a value, then that value is both the average and the median.
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail.

Discussion Question

Standard Deviation

Defining Variability

Plan A: "biggest value - smallest value"

• Doesn't tell us much about the shape of the distribution

Plan B:

- Measure variability around the mean
- Need to figure out a way to quantify this

(Demo)

How Far from the Average?

- Standard deviation (SD) measures roughly how far the data are from their average
- SD = root mean square of deviations from average
 5 4 3 2 1

• SD has the same units as the data

Why Use the SD?

There are two main reasons.

• The first reason:

No matter what the shape of the distribution, the bulk of the data are in the range "average ± a few SDs"

• The second reason:

Coming up in the next lecture.

Chebyshev's Inequality

The Mathematician's Name

- Chebyshev
- Chebychev
- Chebishov
- Čebyšev
- Tchebichev
- Tchebicheff
- Tschebyscheff
- Tschebyschew
- Чебышёв

How Big are Most of the Values?

No matter what the shape of the distribution, the bulk of the data are in the range "average ± a few SDs"

Chebyshev's Inequality

No matter what the shape of the distribution, the proportion of values in the range "average $\pm z$ SDs" is

at least 1 - $1/z^2$

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least 1 - 1/4 (75%)
average ± 3 SDs	at least 1 - 1/9 (88.888%)
average ± 4 SDs	at least 1 - 1/16 (93.75%)
average ± 5 SDs	at least 1 - 1/25 (96%)

No matter what the distribution looks like