Announcements
Classifiers
Training a Classifier

Attributes of an example → Classifier → Predicted label of the example

Population → Sample → Labels

Training Set → Test Set

Model the association between attributes & labels

Estimate the accuracy of the classifier
Nearest Neighbor Classifier

Attributes of an example

NN Classifier
Use the label of the most similar training example

Population

Sample

Labels

Training Set

Test Set

Predicted label of the example
The Google Science Fair

- Brittany Wenger, a 17-year-old high school student in 2012
- Won by building a breast cancer classifier with 99% accuracy

(Demo)
Distance
Rows of Tables

Each row contains all the data for one individual

- `t.row(i)` evaluates to i\(\text{th}\) row of table \(t\)
- `t.row(i).item(j)` is the value of column \(j\) in row \(i\)
- If all values are numbers, then `np.array(t.row(i))` evaluates to an array of all the numbers in the row.
- To consider each row individually, use

```python
for row in t.rows:
    ... row.item(j) ...
```
Distance Between Two Points

- Two attributes x and y:
 \[D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2}. \]

- Three attributes x, y, and z:
 \[D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2}. \]

- and so on ...
Nearest Neighbors
Finding the k Nearest Neighbors

To find the k nearest neighbors of an example:

- Find the distance between the example and each example in the training set
- Augment the training data table with a column containing all the distances
- Sort the augmented table in increasing order of the distances
- Take the top k rows of the sorted table
The Classifier

To classify a point:

- Find its k nearest neighbors
- Take a majority vote of the k nearest neighbors to see which of the two classes appears more often
- Assign the point the class that wins the majority vote

(Demo)
Evaluation
The accuracy of a classifier on a labeled data set is the proportion of examples that are labeled correctly.

Need to compare classifier predictions to true labels.

If the labeled data set is sampled at random from a population, then we can infer accuracy on that population.