Lecture 37

Decisions
Announcements
Classifiers
Training a Classifier

Attributes of an example

Classifier

Population → Sample → Labels → Predicted label of the example

- Population
- Sample
- Labels
- Training Set
- Test Set

Model the association between attributes & labels

Estimate the accuracy of the classifier
Nearest Neighbors
Finding the k Nearest Neighbors

To find the k nearest neighbors of an example:

- Find the distance between the example and each example in the training set
- Augment the training data table with a column containing all the distances
- Sort the augmented table in increasing order of the distances
- Take the top k rows of the sorted table
The Classifier

To classify a point:

- Find its k nearest neighbors
- Take a majority vote of the k nearest neighbors to see which of the two classes appears more often
- Assign the point the class that wins the majority vote

(Demo)
Evaluation
The accuracy of a classifier on a labeled data set is the proportion of examples that are labeled correctly. Need to compare classifier predictions to true labels. If the labeled data set is sampled at random from a population, then we can infer accuracy on that population.
Decisions
‘We asked 20 house officers, 20 fourth-year medical students and 20 attending physicians, selected in 67 consecutive hallway encounters at four Harvard Medical School teaching hospitals, the following question:

“If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of 5%, what is the chance that a person found to have a positive result actually has the disease, assuming that you know nothing about the person's symptoms or signs?”
Eleven of 60 participants, or 18%, gave the correct answer. These participants included four of 20 fourth-year students, three of 20 residents in internal medicine and four of 20 attending physicians. The most common answer, given by 27, was that the chance that a person found to have a positive result actually has the disease was 95%.
Round One

- Scenario:
 - Class consists of second years (60%) and third years (40%)
 - 50% of the second years have declared their major
 - 80% of the third years have declared their major
 - I pick one student at random.

- Which is more likely: Second year or third year?
 - Second year, because they are 60% of the class
Round Two

● Slightly different scenario:
 ○ Class consists of second years (60%) and third years (40%)
 ○ 50% of the second years have declared their major
 ○ 80% of the third years have declared their major
 ○ I pick one student at random...
 That student has declared a major!

● Second Year or Third Year? (Demo)
Bayes' Rule
Bayes’ Rule

Pick a student at random.

Posterior probability:

\[
P(\text{Third Year} \mid \text{Declared}) = \frac{0.4 \times 0.8}{(0.6 \times 0.5) + (0.4 \times 0.8)}
\]

\[= 0.5161\ldots\]
Purpose of Bayes’ Rule

- Update your prediction based on new information
- In a multi-stage experiment, find the chance of an event at an earlier stage, given the result of a later stage
"We asked 20 house officers, 20 fourth-year medical students and 20 attending physicians, selected in 67 consecutive hallway encounters at four Harvard Medical School teaching hospitals, the following question:

"If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of 5%, what is the chance that a person found to have a positive result actually has the disease, assuming that you know nothing about the person's symptoms or signs?"
Example: Doctors & Clinical Tests

Problem did not give the true positive rate.

That’s the chance the test says “positive” if the person has the disease.

It was assumed to be 100%.
P(Disease given Test +) =
\[
\frac{0.001 \times 1}{(0.001 \times 1) + (0.999 \times 0.05)}
\]
= 0.0196270… (Demo)
Decisions
Subjective Probabilities

A probability of an outcome is…

● The frequency with which it will occur in repeated trials, or
● The subjective degree of belief that it will (or has) occurred

Why use subjective priors?

● In order to quantify a belief that is relevant to a decision
● When the subject of your prediction was not selected randomly from the population
A Subjective Opinion

prior probability that the person has the disease
A Different Subjective Opinion

prior probability that the person has the disease

(Demo)