from datascience import *
import numpy as npArrays¶
a = make_array(5, 6, 7, 8)a + 1a * 2a + a(a + a).item(2)sum(a)len(a)sum(a) / len(a)np.average(a)Columns of Tables are Arrays¶
nba = Table.read_table('nba_salaries.csv').where('season', 2020)
warriors = nba.where('team', 'Golden State Warriors')warriorswarriors.select('salary')warriors.column('salary')What was the average salary among players on the warriors in the 2020 season?
np.average(warriors.column('salary'))celtics = nba.where('team', 'Boston Celtics')np.average(warriors.column('salary')) - np.average(celtics.column('salary'))Ranges¶
make_array(0, 1, 2, 3, 4, 5, 6)np.arange(7)np.arange(5, 11)np.arange(0, 20, 2)np.arange(0, 21, 2)np.arange(0, 1, 0.1)Create a table from columns¶
streets = make_array('Bancroft', 'Durant', 'Channing', 'Haste')
streetsTable()southside = Table().with_column('Streets', streets)
southsidesouthside.with_column('Blocks from campus', np.arange(4))Table().with_columns(
'Streets', streets,
'Blocks from campus', np.arange(4)
)W.E.B. DuBois was a data scientist!¶
du_bois = Table.read_table('du_bois.csv')
du_boisdu_bois.column('ACTUAL AVERAGE')du_bois.column('FOOD')du_bois.column('ACTUAL AVERAGE') * du_bois.column('FOOD')food_dollars = du_bois.column('ACTUAL AVERAGE') * du_bois.column('FOOD')
du_bois.with_columns('Food $', food_dollars)du_boisdu_bois = du_bois.with_columns('Food $', food_dollars)
du_boisdu_bois.select('CLASS', 'ACTUAL AVERAGE', 'FOOD', 'Food $')du_bois.labelsdu_bois.num_rowsdu_bois.num_columns