Lecture 21
The Bootstrap
Announcements
Percentiles
Computing Percentiles

Sort the numerical set in increasing order. The 80th percentile is first value on the sorted list that is at least as large as 80% of the elements in the set.

For \(s = [1, 7, 3, 9, 5] \), \(\text{percentile}(80, s) \) is 7.

The 80th percentile is ordered element 4: \((80/100) \times 5 \)

For a percentile that does not exactly correspond to an element, take the next greater element instead.
The percentile Function

- The pth percentile is the value in a set that is at least as large as $p\%$ of the elements in the set.

- Function in the `datascience` module:

  ```
  percentile(p, values)
  ```

- p is between 0 and 100

- Returns the pth percentile of the array
Discussion Question

Which are True, when \(s = [1, 7, 3, 9, 5] \)?

\[
\begin{align*}
\text{percentile}(10, s) &= 0 \\
\text{percentile}(39, s) &= \text{percentile}(40, s) \\
\text{percentile}(40, s) &= \text{percentile}(41, s) \\
\text{percentile}(50, s) &= 5
\end{align*}
\] (Demo)
Estimation
Inference: Estimation

- How big is an unknown parameter?

- If you have a census (that is, the whole population):
 - Just calculate the parameter and you’re done

- If you don’t have a census:
 - Take a random sample from the population
 - Use a statistic as an **estimate** of the parameter

(Demo)
Variability of the Estimate

● One sample ➔ One estimate
● But the random sample could have come out differently
● And so the estimate could have been different
● Main question:
 ○ How different could the estimate have been?
● The variability of the estimate tells us something about how accurate the estimate is:
 \[\text{estimate} = \text{parameter} + \text{error} \]
Where to Get Another Sample?

- One sample → One estimate
- To get many values of the estimate, we needed many random samples
- Can’t go back and sample again from the population:
 - No time, no money
- Stuck?
The Bootstrap
The Bootstrap

● A technique for simulating repeated random sampling

● All that we have is the original sample
 ○ … which is large and random
 ○ Therefore, it probably resembles the population

● So we sample at random from the original sample!
Why the Bootstrap Works

population

sample

resamples

All of these look pretty similar, most likely.
Key to Resampling

- From the original sample,
 - draw at random
 - with replacement
 - as many values as the original sample contained

- The size of the new sample has to be the same as the original one, so that the two estimates are comparable

(Demo)
95% Confidence Interval

- Interval of estimates of a parameter
- Based on random sampling
- 95% is called the confidence level
 - Could be any percent between 0 and 100
 - Higher level means wider intervals
- The confidence is in the process that generated the interval:
 - It generates a “good” interval about 95% of the time.

(Demo)