Lecture 34

Case Study: Education

Slides created by Fahad Kamran (fhdkmrn@berkeley.edu)
Contributions by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu)
Announcements
Tutoring in Computer Science
Small-Group Tutoring at Scale

Fall 2017 small-group mentoring/tutoring (CS Mentors & course tutors)

<table>
<thead>
<tr>
<th>Course</th>
<th>CS 61A</th>
<th>Data 8</th>
<th>CS 61B</th>
<th>CS 70</th>
<th>EE 16A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Program structures</td>
<td>Foundations of data science</td>
<td>Data structures</td>
<td>Discrete math & probability</td>
<td>Linear algebra & circuits</td>
</tr>
<tr>
<td>Mentors</td>
<td>84</td>
<td>31</td>
<td>51</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>Sections</td>
<td>140</td>
<td>60</td>
<td>52</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>Students</td>
<td>587</td>
<td>261</td>
<td>160</td>
<td>156</td>
<td>45</td>
</tr>
</tbody>
</table>
Mentoring Schedule in CS 61A

September 14, 2017 — CS 61A Midterm 1
September 15, 2017 — Sign-ups for adjunct sections open
September 17, 2017 — CS 61A Midterm 1 scores returned
September 18, 2017 — Weekly adjunct sections start
October 19, 2017 — CS 61A Midterm 2

(Demo)
Hypothesis Test

- Null Hypothesis: The sampled improvements for mentored students and non-mentored students are drawn from the same population distribution.
- Alternative Hypothesis: The sampled improvements for mentored students come from a population distribution which has a larger average than the population distribution from which the sampled improvements for non-mentored students came from.
- Test Statistic: Average Improvement for Mentored Students - Average Improvement for Non-Mentored Students
 - Improvement: Score - what was predicted if the student was not mentored
 - Large values point towards the alternative.
Estimation

- Interested in finding the true population average improvement for mentored students
- Bootstrap our sample many times
 - Each time, compute the average improvement
 - Keep track of these averages
- Take the inner-95% of our data as a 95% confidence interval

(Demo)