Lecture 35

Conclusion

Slides created by Fahad (fhdkmrn@berkeley.edu) and Vinitra (vinitra@berkeley.edu)
Announcements
Final Exam

- **Thursday August 9, 5:00 p.m. to 8:00 p.m.**
- **Le Conte 1, Le Conte 4, and other rooms**
 - Seating assignments to be sent via email
- Bring something to write with and something to erase with; but not food/drink that smells. Water is OK.
- We will provide a couple of reference sheets, with drafts posted on Piazza after lecture
- No calculators or other aids
- Covers the whole course
Next Week

- Monday, Tuesday, Wednesday Lectures:
 - TAs will hold review sessions
- No lecture Thursday or Friday
- Monday labs
 - Topical review sessions -- show up to as many as you want
 - Schedule on Piazza after lecture
- Wednesday labs cancelled
- Office hours:
 - All Monday, Tuesday, Wednesday office hours run as normal
 - Thursday, Friday office hours cancelled
- Mock Final: Tuesday night. More information on Piazza!
Final Exam Preparation

- Final exam covers everything
 - List of excluded topics out on Piazza after lecture
- HW 1-11 Solutions released, Labs 1-9 solutions released, Projects 1 and 2 solutions released
- Past exams on the website
 - Fall 2016 is probably the most representative in difficulty
 - Take this one last and time yourself
 - Piazza threads will be available for you to ask questions
 - Answer each others questions!
Overview of the Course
Big Picture of Data 8

1. Python
2. Describing data
3. General concepts of inference and probability
4. Methods of inference
5. Prediction
1. Python

- General features and Table methods: 3.1 - 9.3, 17.3
- sample_proportions: 11.1
- percentile: 13.1
- np.average, np.mean, np.std: 14.1, 14.2
- minimize: 15.4
2. Describing Data

- **Tables**: Chapter 6
- **Classifying and cross-classifying**: 8.2, 8.3
- **Visualizing Distributions**: Chapter 7
- **Center and spread**: 14.1-14.3
- **Linear trend and non-linear patterns**: 8.1, Chapter 15
3. General Concepts of Inference

- Study, experiment, treatment, control, confounding, randomization, causation, association: Chapter 2
- Distribution, Probability: 7.1, 7.2, 9
- Sampling, probability sample: 10.0
- Probability distribution, empirical distribution, law of averages: Chapter 10
- Population, sample, parameter, statistic: 10.1, 10.3
- Model, null and alternative hypothesis: 16.1
Equally Likely Outcomes

- If all outcomes are assumed equally likely, then probabilities are proportions of outcomes:

\[P(A) = \frac{\text{number of outcomes that make } A \text{ happen}}{\text{total number of outcomes}} \]

= proportion of outcomes that make \(A \) happen

- 9.5
Probability: Exact Calculations

- Probabilities are between 0 (impossible) and 1 (certain)
- \(P(\text{event happens}) = 1 - P(\text{the event doesn’t happen}) \)
- Chance that two events \(A \) and \(B \) both happen
 \[= P(A \text{ happens}) \times P(B \text{ happens given that } A \text{ has happened}) \]
- If event \(A \) can happen in exactly one of two ways, then
 \[P(A) = P(\text{first way}) + P(\text{second way}) \]
4. Methods of Inference

- Making conclusions about unknown features of the population or model, based on assumptions of randomness in a sample
Simulation

● Using a computer to mimic a physical experiment
● Uses a for loop
● Examples:
 ○ Sampling many random samples under a null hypothesis
 ○ Bootstrapping (sampling with replacement) many times from a random sample
● Oftentimes, aim to create an empirical distribution which approximates the probability distribution
Statistics and Parameters

- If we had population information, we would know all sorts of information from it
 - Models that govern the population
 - If two populations are the same
 - Population parameters
 - Average
 - Median
- All we have is one sample from the population
- Statistic: One number calculated from a sample
Typical Hypothesis Testing

- We try to decide between two models that govern a population
 - One null (chance model), one alternative
- We have one sample of data from a population
 - Is it possible our sample come from the null hypothesis?
- P-Value
 - What’s the chance of seeing our observed data, if the null was true, or further in the direction of the alternative viewpoint?
A/B Testing

- We have samples from two groups of data
 - Did the two samples come from the same distribution?
 - Is the difference we see just due to random chance?
- Follow normal hypothesis testing
- How do we simulate under the null?
 - If the null was true, no association between group and values
 - Shuffle values randomly, assign them back to original group
- We can conclude if our data shows an association between groups and values
Estimation

- Try to determine a population parameter
- We have one sample
 - Our sample statistic is a decent estimate
- We have a sample of data
 - What if our sample had been different?
- Bootstrap our data and create confidence intervals
 - Quantify our uncertainty about our estimate for the population parameter
Causality

- Tests of hypotheses can help decide that a difference is not due to chance

- But they don’t say *why* there is a difference …

- Unless the data are from an RCT
 - In that case a difference that’s not due to chance can be ascribed to the treatment
5. Prediction

- Descriptive statistics:
 - One variable (average, SD, etc)
 - Two variables (correlation and regression)

- Classification
Regression Pt. 1

- Use average and standard deviation to describe a distribution
- Use the above to convert data to standard units
- Use this to calculate linear association (correlation) between two variables
- Slope of regression line in standard units turns out to be correlation
Regression Pt. 2

- Create a regression line in original units by finding slope, intercept
- Turns out regression line is the unique line which minimizes root mean squared error
- Analyze residuals of regression predictions to determine if linear regression was a good idea
Regression Inference

- Regression model:
 - Data originally came from a “true line”
 - Take a sample of points, push them off the line randomly (with normal distribution, mean 0)
- We have a sample of points
 - What if our sample had been different?
- Bootstrap our scatter plot
 - Can try and predict the slope, heights at various x-values of the “true line”
Classification

- Binary classification based on attributes 17.1
 - k-nearest neighbor classifiers
- Training and test sets 17.2
 - Why these are needed
 - How to generate them
- Implementation: 17.4
 - Distance between two points
 - Class of the majority of the k nearest neighbors
- Accuracy: Proportion of test set correctly classified 17.5
Machine Learning

- **Supervised Machine Learning**
 - Input: Labeled data
 - Output: Prediction for unlabeled example
 - High computational complexity

- **Unsupervised Machine Learning**
 - Input: Unlabeled data
 - Output: Recognize underlying patterns in the data
 - Low computational complexity
What's Next?
Course Recommendations
Data 100
Data Science Lifecycle

Data 100: Principles and Techniques of Data Science

- Prepare students for advanced courses in data-management, machine learning, and statistics
- Enable students to start careers as data scientists by working with real-world data, tools, and techniques NumPy, Pandas, SQL, Spark, Seaborn, SciKitLearn, Plotly

Prerequisites: Data 8, Computing, Math (Linear Algebra)
Prob 140
Probability

Here’s the model; what can you say about the sample?

Prob 140: Probability for Data Science (prob140.org)

● Pilot in Spring 2017
● Listed as Statistics 140
● Several members of the course staff recently took it
● The mathematics of chance
● Python and Jupyter are used for computing and for understanding the math better
Programming

- CS 61A: Structure and Interpretation of Computer Programs
 - CS 88: Computational Structures in Data Science
- CS 61B: Data Structures and Algorithms
- STAT 133: Concepts in Computing with Data
- CS 186: Introduction to Databases
Inference

- STAT 135: Concepts of Statistics
- STAT 150: Stochastic Processes
- STAT 151A: Linear Modeling
- STAT 153: Introduction to Time Series
- PB HLTH 142: Intro to Probability and Statistics in Biology
Prediction

- CS 188: Introduction to Artificial Intelligence
- CS 189: Introduction to ML
- IEOR 142: Introduction to ML & Data Analytics
- STAT 154: Modern Statistical Prediction & ML
Data Science Major / Minor

All released information can be found on data.berkeley.edu
Data Science
Why Data Science

- Unprecedented access to data means that we can make new discoveries and more informed decisions
- Computation is a powerful ally in data processing, visualization, prediction, and statistical inference
- People can agree on evidence and measurement
How to Analyze Data

Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

Visualize, then quantify!

Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.
How *Not* to Analyze Data

Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

Visualize, then *quantify*!

Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.
How to Analyze Data in 2018

Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

Visualize, then quantify! Do both using computation.

Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.
The Design of Data 8

- Table manipulation using Python
- Working with whole distributions, not just means
- Decisions based on sampling: assessing models
- Estimation based on resampling
- Understanding sampling variability
- Prediction
Data Science in the Future
Our Journeys
A Request
Please fill out the course evaluations.
The Team
Staff

- GSIs
- Tutors
- Lab Assistants
Joining the Team
roger gemper 11:57 AM
set the channel topic: Kinda just want to see how long it takes someone to notice this changed

roger gemper 11:57 AM
oh

that didn't work

roger gemper 11:58 AM
set the channel topic: Whatever this was before. Something about water coolers

😊 5
Rohan 2:59 PM
they’re disgusting

Fahad Kamran 2:59 PM
you’re disgusting

shoumik 2:59 PM
Your theory was correct Ryan
GOTEM

Fahad Kamran 2:59 PM
GOTTEM

Rohan 3:00 PM
i know you are but what am i

Fahad Kamran 3:00 PM
i am rubber you are glue whatever you say bounces off of me and sticks back to you

sathvik 3:00 PM
HE IS EVERYWHERE

Rohan 3:00 PM
that’s not what ur mum said last night
We were looking for something to do tomorrow night right???

❤️ 3

Rohan 1:21 PM
sick let's drive down to LA
? Claire will clarify!

Missed a golden opportunity to say "Claire with Claire-ify!"

clairez 🌟 5:05 PM
GOD I've never seen that before.... 3 degrees = 3 times as original

habowrd 5:49 PM
wow I have a terrible allergies.... I could really use some claire-itty

roger gemper 5:50 PM
Would eating an e-claire help?

Rohan 5:51 PM
claire-ity that's the only option

hari 5:51 PM
wow I gained such claire-ity from this thread

clairez 🌟 6:01 PM
Glad it claired things up for u

shoumik 6:03 PM
Can we de-claire it over then?
@shoumik still down?

@shoumik do you think if we @ him twice it will get his attention

Yes

only one way to find out

Hmmm nothing's happened yet, maybe 3rd time's the charm?

still only one way to find out

@shoumik pls

It's been 2 whole minutes
savrina 8:42 PM
Is the point of showing these to tell students that we're weird or what

Fahad Kamran 8:42 PM
to join staff

Rohan 8:46 PM
man i wish i could join data 8 staff

savrina 8:48 PM
Thank you!

Come get boba with us (drinks not included)