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Regression

Why estimate the average of a population at all?

One reason: Sometimes most things are near the average.
Example: Time to drive from Berkeley to Mountain View.
Reasonable guess: Overall average driving time.

But what if we know it’s close to rush hour? Overall average looks like this:



Regression
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Regression

Better idea: Predict that it will take the average driving time for trips around this

close to rush hour. 80
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Steps to the regression line

In this class, we first taught correlation and standard units

We used correlation and realized that the line of best fit for two variables in
standard units is the line with slope=correlation and intercept=0



Computing Slopes and Intercepts with Correlation

e (estimate of y in standard units) = r * (x in standard units)
e (estimate of y — average of y)/ SD of y =r * (x — average of x) / SD of x

Regression Line in Standard Units

If the regression line is, indeed, a line,
o r Then its form: y = slope*x + intercept.

Slope: r*SD(y)/SD(x)

Regression Line in Original Units

Intercept: mean(y) - slope*mean(x)

(average of x, average of y)

SD of x



Computing Slopes and Intercepts with Correlation
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Computing Slopes and Intercepts via Optimization
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Residual Plots

Residuals are the observed value - the
predicted estimate by regression

Looking at residual plots; the x value
versus the residual, help us decide
whether regression was a good fit for
our graph

The residual plot of a good regression
shows no pattern, so the residuals
look about the same above and below
a horizontal line at 0

residuals
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Is Regression a good idea?
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Variance of Residuals

Variance of residuals
R e e e — - I
Variance of y

SD of residuals = V(1-r? SDof y



Standard Deviation of Residuals

e Two important formulas

SD of predicted values
SD of y

= r]

SD of residuals = sqgrt(1 -r **2) * SD of y
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Regression Inference

Compute a confidence interval over your regression line.
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Regression Inference

Compute a confidence interval over your regression line.

Original sample
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Regression Inference

The generative model: e

180
y = (mx + b) + error (ie residual) 15D
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Regression Inference

Questions

1. When can you determine whether the 2. How can you determine whether variables
slope of the true line is zero? are truly linearly related?



Regression Inference

Questions

1. When can you determine whether the
slope of the true line is zero?
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Regression Inference

Questions

2. How can you determine whether variables  Draw a residual plot and check that the errors
are truly linearly related? are appear to be drawn randomly from a
normally distributed population.
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Classification

Observations: Single instances or situations that we would like to be able to
classify.

e Observations have attributes, or different features about them
e Attribute/feature selection is crucial to classification



Classification (contd.)

Examples:

e Genre of movie (Action/Romance)
e Presence of Breast Cancer
e Student standing (lower division/upper division)



Classification (contd.)

Why do we use a training set and a test set? How should they be picked?

In order to test our classifier, and testing on the training set might give a
false impression. They need to be picked randomly!

Why is it bad not to partition your data into a test set and a training set?

You’'ll overfit! With a one-nearest neighbor classifier, you’ll have 100%
accuracy, which is not a good model for the real world.

Should the test set be used to tune your model?
No! The test set should be used to see how well your model does in real
world applications and should not be used during training



K-nearest neighbors classifier

1. Get some features/attributes which you think would be useful to classify

something (often times the hardest part)

2. Gather some data which you know the values of the features as well as the
true classification/label of those data points

3. When you encounter a new data point which you don’t know, calculate the

‘closest’ k neighbors and from those k data points, take the majority.
Distance Formul

How to calculate the ‘closest’: Distance formula is often useful
2

4=l =x) + (v, - )



K-nearest neighbors classifier example
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person’s attributes which you don’t

someone who has chronic kidney
know, calculate the ‘closest’ k

disease and not
2. Find a relevant data set
neighbors and from those k data

Choose some features that you
think would distinguish between
points, take the majority and

3. When you encounter a new

1.
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Machine Learning

e Supervised
o Use labeled data to make a prediction about an
unlabeled example
e Unsupervised
o Look at unlabeled data to recognize underlying
patterns



